Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 281: 109926, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641085

RESUMEN

In this study, we investigated the possible ecotoxicological effect of co-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (Danio rerio). After six days of exposure, we noticed that the co-exposure to PS-NP (100 µg/L) and DCF (at 50 and 500 µg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the TNF-α, COX-2, and IL-1ß expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish.

2.
Chemosphere ; 354: 141678, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485003

RESUMEN

Pharmaceutical active compound (PhAC) residues are considered an emerging micropollutant that enters the aquatic environment and causes harmful ecotoxicity. The significant sources of PhACs in the environment include the pharmaceutical industry, hospital streams, and agricultural wastes (animal husbandry). Recent investigations demonstrated that wastewater treatment plants (WWTPs) are an important source of PhACs discharging ecosystems. Several commonly reported that PhACs are detected in a range level from ng L-1 to µg L-1 concentration in WWTP effluents. These compounds can have acute and chronic adverse impacts on natural wildlife, including flora and fauna. The approaches for PhAC removals in WWTPs include bioremediation, adsorption (e.g., biochar, chitosan, and graphene), and advanced oxidation processes (AOPs). Overall, adsorption and AOPs can effectively remove PhACs from wastewater aided by oxidizing radicals. Heterogeneous photocatalysis has also proved to be a sustainable solution. Bioremediation approaches such as membrane bioreactors (MBRs), constructed wetlands (CWs), and microalgal-based systems were applied to minimize pharmaceutical pollution. Noteworthy, applying MBRs has illustrated high removal efficiencies of up to 99%, promising prospective future. However, WWTPs should be combined with advanced solutions, e.g., AOPs/photodegradation, microalgae-bacteria consortia, etc., to treat and minimize their accumulation. More effective and novel technologies (e.g., new generation bioremediation) for PhAC degradation must be investigated and specially designed for a low-cost and full-scale. Investigating green and eco-friendly PhACs with advantages, e.g., low persistence, no bioaccumulation, less or non-toxicity, and environmentally friendly, is also necessary.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Aguas Residuales , Eliminación de Residuos Líquidos , Ecosistema , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas
3.
Environ Res ; 250: 118543, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38417661

RESUMEN

While global attention has been primarily focused on the occurrence and persistence of microplastics (MP) in urban lakes, relatively little attention has been paid to the problem of MP pollution in rural recreational lakes. This pioneering study aims to shed light on MP size, composition, abundance, spatial distribution, and contributing factors in a rural recreational lake, 'Nikli Lake' in Kishoreganj, Bangladesh. Using density separation, MPs were extracted from 30 water and 30 sediment samples taken from ten different locations in the lake. Subsequent characterization was carried out using a combination of techniques, including a stereomicroscope, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FE-SEM). The results showed a significant prevalence of MPs in all samples, with an average amount of 109.667 ± 10.892 pieces/kg3 (dw) in the sediment and 98.167 ± 12.849 pieces/m3 in the water. Small MPs (<0.5 mm), fragments and transparent colored particles formed the majority, accounting for 80.2%, 64.5% and 55.3% in water and 78.9%, 66.4% and 64.3% in sediment, respectively. In line with global trends, polypropylene (PP) (53%) and polyethylene (PE) (43%) emerged as the predominant polymers within the MPs. MP contents in water and sediment showed positive correlations with outflow, while they correlated negatively with inflow and lake depth (p > 0.05). Local activities such as the discharge of domestic sewage, fishing waste and agricultural runoff significantly influence the distribution of polypropylene. Assessment of pollution factor, pollution risk index and pollution load index values at the sampling sites confirmed the presence of MPs, with values above 1. This study is a baseline database that provides a comprehensive understanding of MP pollution in the freshwater ecosystem of Bangladesh, particularly in a rural recreational lake. A crucial next step is to explore ecotoxicological mechanisms, legislative measures and future research challenges triggered by MP pollution.

4.
Mar Pollut Bull ; 200: 116137, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377866

RESUMEN

The escalating global microplastic (MP) pollution severely threatens marine life due to insufficient waste management and widespread single-use plastic. This study focuses on assessing MP contamination in commercial prawns from Gujarat State, India. Ten prawn species collected at five main fishing harbors revealed 590 MP particles in their gastrointestinal tracts, averaging 6.08 ± 5.96 MPs/g and 1.15 ± 0.78 MPs/individual. Significant variations in contamination levels were observed between species and study sites. Pollution indices indicated very high contamination throughout the study sites. Threads were the predominant shape, with blue and black as prevalent colors. Size-wise, 1-2 mm MPs dominated. Polymer analysis identified polyethylene terephthalate, polyurethane, polystyrene, polypropylene, polyvinyl chloride, and acrylonitrile butadiene styrene. The findings provided crucial preliminary information for ecotoxicology and seafood safety investigations regarding MP contamination in commercially important prawns.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Prevalencia , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Alimentos Marinos/análisis
5.
Environ Monit Assess ; 196(2): 137, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200343

RESUMEN

Plasticrusts manifest as a coating on intertidal rocks due to environmental exposure. They refer to crushed plastic debris that blankets rocks found along intertidal shorelines. This study significantly contributes to a better understanding of the occurrence of these novel plastic formations, shedding light on their potential pathways of formation during the Anthropocene era. The research provides comprehensive insights into the composition, origins, challenges, and effective management strategies for removing coastal plastic litter. The findings of this investigation offer valuable evidence regarding the formation and impact of these recently discovered plastic items in coastal regions, prompting discussions about their formation processes and their effects on the marine ecosystem. Recognizing that these newly emerged plastic litter pose a considerable threat to the marine environment is crucial. With their emergence, we face an environmental challenge, especially concerning the health of coastal ecosystems. Plasticrusts, when degraded, can release microplastics (MPs) and nanoparticles (NPs) into the surrounding environment. These micro- and nano-sized plastic particles pose significant ecological risks as they persist in ecosystems, potentially harming wildlife and entering the food chain, causing widespread environmental contamination. Significantly, it outlines strategies to minimize the impact of this emerging plastic debris and its source.


Asunto(s)
Ecosistema , Plásticos , Animales , Monitoreo del Ambiente , Animales Salvajes , Exposición a Riesgos Ambientales
6.
Environ Res ; 247: 118179, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218516

RESUMEN

Globally, soil acidification is a serious environmental issue that reduces commercial agricultural production. Rice is subjected to nutritional stress due to acidic soil, which is a major impediment to rice production. Since acid soil threatens rice plants with soil compaction, nutrient loss, and plant stress-induced oxidative cell damage that results in affecting the photosynthetic system, restricting the availability of water, and reducing overall plant growth and productivity. Since contemporary soil acidification management strategies provide mediocre results, the use of Sargassum wightii seaweed-based biostimulants (BS) and soil amendments is sought as an environmentally friendly alternative strategy, and therefore its potential isevaluated in this study. BS was able to mediate soil quality by improving soil pH and structure along with facilitating nitrogen phytoavailability. BS also increased the activity of the antioxidant enzyme system, superoxide dismutase ((48%), peroxidase (76.6%), and ascorbate peroxidase (63.5%), aggregating the monaldehyde-mediating accumulation of osmoprotective proline in roots, that was evident from rapid initiation of root hair growth in treated seedlings. BS was also able to physiologically modulate photosynthetic activities and chlorophyll production (24.31%) in leaves, maintaining the efficiency of plant water use by regulating the stomatal conductance (0.91 mol/m/s) and the transpiration rate (13.2 mM/m/s). The BS compounds were also successful in facilitating nitrogen uptake resulting in improved plant growth (59%), tiller-panicle number, and yield (52.57%), demonstrating a resourceful nitrogen use efficiency (71.96%) previously affected by stress induced by acid soil. Therefore, the study affirms the competent potential of S. wightii-based soil amendment to be applied not only to improve soil quality, but also to increase plant production and yield.


Asunto(s)
Oryza , Suelo , Fotosíntesis/fisiología , Antioxidantes/metabolismo , Nitrógeno , Verduras , Agua
7.
J Nanobiotechnology ; 22(1): 13, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167034

RESUMEN

In recent years, the environmental health issue of microplastics has aroused an increasingly significant concern. Some studies suggested that exposure to polystyrene microplastics (PS-MPs) may lead to renal inflammation and oxidative stress in animals. However, little is known about the essential effects of PS-MPs with high-fat diet (HFD) on renal development and microenvironment. In this study, we provided the single-cell transcriptomic landscape of the kidney microenvironment induced by PS-MPs and HFD in mouse models by unbiased single-cell RNA sequencing (scRNA-seq). The kidney injury cell atlases in mice were evaluated after continued PS-MPs exposure, or HFD treated for 35 days. Results showed that PS-MPs plus HFD treatment aggravated the kidney injury and profibrotic microenvironment, reshaping mouse kidney cellular components. First, we found that PS-MPs plus HFD treatment acted on extracellular matrix organization of renal epithelial cells, specifically the proximal and distal convoluted tubule cells, to inhibit renal development and induce ROS-driven carcinogenesis. Second, PS-MPs plus HFD treatment induced activated PI3K-Akt, MAPK, and IL-17 signaling pathways in endothelial cells. Besides, PS-MPs plus HFD treatment markedly increased the proportions of CD8+ effector T cells and proliferating T cells. Notably, mononuclear phagocytes exhibited substantial remodeling and enriched in oxidative phosphorylation and chemical carcinogenesis pathways after PS-MPs plus HFD treatment, typified by alterations tissue-resident M2-like PF4+ macrophages. Multispectral immunofluorescence and immunohistochemistry identified PF4+ macrophages in clear cell renal cell carcinoma (ccRCC) and adjacent normal tissues, indicating that activate PF4+ macrophages might regulate the profibrotic and pro-tumorigenic microenvironment after renal injury. In conclusion, this study first systematically revealed molecular variation of renal cells and immune cells in mice kidney microenvironment induced by PS-MPs and HFD with the scRNA-seq approach, which provided a molecular basis for decoding the effects of PS-MPs on genitourinary injury and understanding their potential profibrotic and carcinogenesis in mammals.


Asunto(s)
Microplásticos , Poliestirenos , Ratones , Animales , Microplásticos/toxicidad , Plásticos , Análisis de Expresión Génica de una Sola Célula , Dieta Alta en Grasa/efectos adversos , Células Endoteliales , Fosfatidilinositol 3-Quinasas , Riñón , Carcinogénesis , Mamíferos , Microambiente Tumoral
8.
Chemosphere ; 350: 141055, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176589

RESUMEN

The utilization of natural fibres often entails a lesser environmental impact when compared to synthetic fibres. Biodegradable natural fibres minimize waste and pollution, and promote sustainability, but their weaker bonds limit their resilience. These issues can be addressed by customizing the composite's mechanical properties with natural and synthetic fibres. In this study, hybrid composites were created using the hand layup method with a novel dissimilar layer arrangement of neem (N), sisal (S), and glass (G) fibre and analyze its mechanical and thermal properties. Experimental observation shows that the GN composite had a higher maximum ultimate tensile strength of 26 N/mm2 than the GS, GNS, and GSN composites. The GN composite had a percentage elongation of 6.33%, similar to the percentage elongation of the GS composite (6.833%), and it also had a higher ultimate shear strength of 50 MPa. The composite GS absorbed 6.6 J energy, higher than the composites GN, GNS, and GNS, which absorbed 6.1 J, 4.5 J, and 4.5 J, respectively. The fractured surface's SEM images were obtained and analyzed for failure. The results demonstrated that the hybridization was effective, and better properties can be obtained by combining neem, sisal, and glass fiber, and it can be used for other requirements, including strength, weight, cost, and ecological impact.


Asunto(s)
Resinas Compuestas , Restauración y Remediación Ambiental , Ensayo de Materiales , Resinas Compuestas/química , Contaminación Ambiental , Resistencia a la Tracción
9.
Sci Total Environ ; 918: 170499, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38296101

RESUMEN

Polypropylene based medical devices significantly increased production and usage in COVID-19 pandemic states, and this material is very resilient in the environment. Thus, more than ever, rapid action is needed to reduce this pollution. This study focuses on the degradation of polypropylene microplastics (PP MPs) by unique marine bacterial strains obtained from the Thoundi (Bacillus tropicus, Bacillus cereus, Stenotrophomonas acidaminiphila, and Brucella pseudintermedia) and Rameshwaram coasts (Bacillus cereus). Those above five bacterial strains were chosen after preliminary screening of their hydrophobicity, biofilm-forming capabilities, and responsiveness to the zone of clearance technique. During the biodegradation process (28 days), the growth, metabolic activity, and viability of these five isolates were all raised. After the post-biodegradation process, the weight loss percentages of the mentioned bacterial strains treated with PP MPs gradually decreased, with values of 51.5 ± 0.5 %, 47.5 ± 0.5 %, 33 ± 1 %, 28.5 ± 0.5 and 35.5 ± 0.5 %, respectively. UV-Vis DRS and SEM analysis confirmed that bacterial strains adhering to MPs cause cracks and cavities on their surface. The degradation of PP MPs can be inferred from alterations in the FT-IR spectrum, specifically in the carbonyl group range of 1100-1700 cm-1, as well as changes in the 1H NMR spectrum, including chemical shift and proton peak pattern alterations. Bacterial strains facilitated the degradation of PP MPs through the secretion of hydrolase-categorized enzymes of protease, lipase, and esterase. The findings of this study indicate that marine bacteria may possess distinctive characteristics that facilitate the degradation of plastic waste and contribute to environmental conservation.


Asunto(s)
Polipropilenos , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos , Espectroscopía Infrarroja por Transformada de Fourier , Pandemias , Biodegradación Ambiental , Bacillus cereus/metabolismo , Contaminantes Químicos del Agua/análisis
10.
Environ Pollut ; 344: 123400, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272167

RESUMEN

Environmental pollution poses risks to ecosystems. Among these risks, one finds neurotoxicity and damage to the lateral line structures of fish, such as the neuromast and its hair cells. Zebrafish (Danio rerio) is recommended as model species to be used in ecotoxicological studies and environmental biomonitoring programs aimed at assessing several biomarkers, such as ototoxicity. However, little is known about the history of and knowledge gaps on zebrafish ototoxicity. Thus, the aim of the current study is to review data available in the scientific literature about using zebrafish as animal model to assess neuromast toxicity. It must be done by analyzing the history and publication category, world production, experimental design, developmental stages, chemical classes, neuromasts and hair cell visualization methods, and zebrafish strains. Based on the results, number, survival and fluorescence intensity of neuromasts, and their hair cells, were the parameters oftentimes used to assess ototoxicity in zebrafish. The wild AB strain was the most used one, and it was followed by Tübingen and transgenic strains with GFP markers. DASPEI was the fluorescent dye most often applied as method to visualize neuromasts, and it was followed by Yo-Pro-1 and GFP transgenic lines. Antibiotics, antitumorals, metals, nanoparticles and plant extracts were the most frequent classes of chemicals used in the analyzed studies. Overall, pollutants can harm zebrafish's mechanosensory system, as well as affect their behavior and survival. Results have shown that zebrafish is a suitable model system to assess ototoxicity induced by environmental pollution.


Asunto(s)
Ototoxicidad , Perciformes , Animales , Pez Cebra , Ecosistema , Antibacterianos/toxicidad , Contaminación Ambiental
11.
Mar Pollut Bull ; 198: 115863, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039574

RESUMEN

This study investigated microplastics (MPs) in commercial sea salts from Bangladesh. The presence of MPs in the 18 sea salt bands was 100 %, where the mean MPs abundance was 471.67 MPs/kg, ranging between 300 and 670 MPs/kg. The maximum number of MPs in the 300-1500 µm size class was significantly higher than the 1500-3000 µm and 3000-5000 µm size class. The most dominant color was black. Fibers and foams were the dominant shapes. The highest number of MPs was 41 %, obtained from coarse salt grains. Four types of polymers were mainly identified from the analyzed samples: PP, PE, PET, and PA. The mean polymer risk index value among these sea salts was 539 to 1257. The findings of this study can be helpful for consumers, salt industries, and policymakers to be aware of or reduce MP contamination levels in sea salts during production and consumption.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Sales (Química) , Bangladesh , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Cloruro de Sodio Dietético/análisis
12.
J Contam Hydrol ; 260: 104271, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056088

RESUMEN

Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Humanos , Plásticos , Microplásticos , Bahías , Estuarios , Biodiversidad , Polímeros , Agua , Monitoreo del Ambiente , Sedimentos Geológicos
13.
Environ Sci Pollut Res Int ; 31(2): 2343-2359, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057678

RESUMEN

Toxic metals and freshwater fish's metalloid contamination are significant environmental concerns for overall public health. However, the bioaccumulation and sources of metal(loids) in freshwater fishes from Bangladesh still remain unknown. Thus, the As, Pb, Cd, and Cr concentrations in various freshwater fish species from the Rupsha River basin were measured, including Tenualosa ilisha, Gudusia chapra, Otolithoides pama, Setipinna phasa, Mystus vittatus, Glossogobius giuris, and Pseudeutropius atherinoides. An atomic absorption spectrophotometer was used to determine metal concentrations. The mean concentrations of metal(loids) in the fish muscle (mg/kg) were found to be As (1.53) > Pb (1.25) > Cr (0.51) > Cd (0.39) in summer and As (1.72) > Pb (1.51) > Cr (0.65) > Cd (0.49) in winter. The analyzed fish species had considerably different metal(loid) concentrations with seasonal variation, and the distribution of the metals (loids) was consistent with the normal distribution. The demersal species, M. vittatus, displayed the highest bio-accumulative value over the summer. However, in both seasons, none of the species were bio-accumulative. According to multivariate statistical findings, the research area's potential sources of metal(loid) were anthropogenic activities linked to geogenic processes. Estimated daily intake, target hazard quotient (THQ), and carcinogenic risk (CR) were used to assess the influence of the risk on human health. The consumers' THQs values were < 1, indicating that there were no non-carcinogenic concerns for local consumers. Both categories of customers had CRs that fell below the permissible range of 1E - 6 to 1E - 4, meaning they were not at any increased risk of developing cancer. The children's group was more vulnerable to both carcinogenic and non-carcinogenic hazards. Therefore, the entry of metal(loids) must be regulated, and appropriate laws must be used by policymakers.


Asunto(s)
Bagres , Metales Pesados , Contaminantes Químicos del Agua , Animales , Niño , Humanos , Metales Pesados/análisis , Ríos , Cadmio , Bioacumulación , Salud Pública , Bangladesh , Plomo , Peces , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Medición de Riesgo
16.
J Hazard Mater ; 464: 132880, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37956561

RESUMEN

The exponential use of plastics has significantly increased environmental pollution by nanoplastics (NPs). In the aquatic environment, NPs interact and bioaccumulate in the biota, posing a potential ecotoxicological risk. The present study investigated the developmental toxicity, vasotoxicity, cytotoxicity, ROS induction, and behavioral impairments in zebrafish (Danio rerio) exposed to environmentally relevant polystyrene NPs (PS-NPs) concentrations (0.04, 34 ng L-1, and 34 µg L-1) for 144 h through multiple biomarkers response (mortality, frequency of spontaneous contractions, heart rate, and morphological changes). Furthermore, vasotoxicity (head, yolk sac, tail, and branchial vessels) was evaluated using the transgenic zebrafish tg(Fli1:eGFP). Results showed that PS-NPs interacted mainly with zebrafish chorion, gills, tail, and larvae head. PS-NPs at 34 ng L-1 and 34 µg L-1 induced neurotoxicity (decreased frequency of spontaneous contractions), cardiotoxicity (bradycardia), and morphological changes in the eyes and head, indicating that PS-NPs induce developmental impairments in zebrafish. In addition, cytotoxicity in the caudal region (34 ng L-1), ROS production, decreased mean swimming speed, and distance covered were observed in all tested concentrations. PS-NPs also induced vasotoxicity (yolk sac region) in transgenic zebrafish. Overall, the present study demonstrates the harmful effects of PS-NPs on the early developmental stages of freshwater fish, indicating their environmental risk.


Asunto(s)
Poliestirenos , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Pez Cebra/fisiología , Microplásticos/toxicidad , Especies Reactivas de Oxígeno/farmacología , Plásticos , Animales Modificados Genéticamente , Larva , Contaminantes Químicos del Agua/toxicidad
17.
Environ Pollut ; 343: 123236, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38160776

RESUMEN

The increasing use of cellulose-based materials (CBMs) has provided beneficial applications in different sectors. However, its release into environments may represent an ecological risk, therefore demanding that ecotoxicological studies be conducted to understand the risks (current and future) of CBM pollution. Thus, we evaluated the possible effects of microcrystalline cellulose (CMs) in Physalaemus cuvieri tadpoles. After seven days of exposure to CMs (at 58.29 and 100 mg/L), the animals were subjected to behavioral evaluation, and different biomarkers (biometric and biochemical) were evaluated. Although our data do not point to a neurotoxic effect of CMs (inferred by the absence of behavioral changes and changes in AChE and BChE activity), animals exposed to CMs showed differences in body condition. Furthermore, we noticed an increase in the frequency of erythrocyte nuclear abnormalities and DNA damage, which were correlated with the ingestion of CMs. We noticed that the antioxidant activity of tadpoles exposed to CMs (inferred by SOD, CAT, and DPPH radical scavenging activity) was insufficient to control the increase in ROS and MDA production. Furthermore, exposure to CMs induced a predominant Th2-specific immune response, marked by suppressed IFN-γ and increased IL-10 levels, with a consequent reduction in NO levels. Principal component analysis and IBRv-2 indicate, in general, a primarily more toxic response to animals exposed to the highest CM concentration. Therefore, our study evidence that CMs affect the health of P. cuvieri tadpoles and sheds light on the threat these materials pose to amphibians.


Asunto(s)
Anuros , Contaminantes Químicos del Agua , Animales , Larva , Anuros/fisiología , Antioxidantes/farmacología , Contaminantes Químicos del Agua/toxicidad
18.
J Contam Hydrol ; 260: 104284, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101231

RESUMEN

Microplastic (MP) pollution has evolved into a significant worldwide environmental concern due to its widespread sources, enduring presence, and adverse effects on lentic ecosystems and human well-being. The growing awareness of the hidden threat posed by MPs in lentic ecosystems has emphasized the need for more in-depth research. Unlike marine environments, there remain unanswered questions about MP hotspots, ecotoxic effects, transport mechanisms, and fragmentation in lentic ecosystems. The introduction of MPs represents a novel threat to long-term environmental health, posing unresolved challenges for sustainable management. While MP pollution in lentic ecosystems has garnered global attention due to its ecotoxicity, our understanding of MP hotspots in lakes from an Asian perspective remains limited. Hence, the aim of this review is to provide a comprehensive analysis of MP hotspots, morphological attributes, ecotoxic impacts, sustainable solutions, and future challenges across Asia. The review summarizes the methods employed in previous studies and the techniques for sampling and analyzing microplastics in lake water and sediment. Notably, most studies concerning lake microplastics tend to follow the order of China > India > Pakistan > Nepal > Turkey > Bangladesh. Additionally, this review critically addresses the analysis of microplastics in lake water and sediment, shedding light on the prevalent net-based sampling methods. Ultimately, this study emphasizes the existing research gaps and suggests new research directions, taking into account recent advancements in the study of microplastics in lentic environments. In conclusion, the review advocates for sustainable interventions to mitigate MP pollution in the future, highlighting the presence of MPs in Asian lakes, water, and sediment, and their potential ecotoxicological repercussions on both the environment and human health.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Ecosistema , Contaminantes Químicos del Agua/análisis , Lagos , Agua , Monitoreo del Ambiente/métodos
20.
Sci Total Environ ; 913: 169529, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38160826

RESUMEN

Chemical pollutants represent a leading problem for aquatic ecosystems, as they can induce genetic, biochemical, and physiological changes in the species of these ecosystems, thus compromising their adaptability and survival. The Capibaribe River runs through the state of Pernambuco, located in Northeastern Brazil, and passes through areas of agricultural cultivation, densely populated cities, and industrial centers, primarily textiles. Despite its importance, few ecotoxicological studies have been conducted on its environment, and knowledge about pollution patterns and their effects on its biota is still being determined. The objective of this study was to evaluate the water quality and the damage supposed to be caused by pollutants on the DNA specimens of Nile tilapia (Oreochromis niloticus) obtained from seven strategic points of Capibaribe. Tilapia specimens and water were collected during the rainy and dry seasons from 2015 to 2017. The following characteristics were analyzed: physicochemical (six), metal concentration (seven), local pluviosity, micronuclei, and comet assay. The physicochemical and heavy metal analyses were exploratory, whereas the ecotoxicological analyses were hypothetical. To verify this hypothesis, we compared the groups of fish collected to the results of the micronuclei test and comet assay. We created a Structural Equation Model (SEM) to determine how each metal's micronuclei variables, damage index, pluviosity, and concentration were related. Our results demonstrated that the highest values for markers of genetic damage were detected at points with the highest heavy metal concentrations, especially iron, zinc, manganese, chromium, and cadmium. The SEM demonstrated that metals could explain the findings of the genotoxicity markers. Moreover, other pollutants, such as pesticides, should be considered, mainly where the river passes through rural areas. The results presented here demonstrate that the Capibaribe River has different degrees of contamination and confirm our hypothesis.


Asunto(s)
Cíclidos , Metales Pesados , Contaminantes Químicos del Agua , Animales , Ríos/química , Mutágenos/toxicidad , Mutágenos/análisis , Ecosistema , Análisis de Clases Latentes , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Daño del ADN , Agua Dulce , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...